modules/sd_samplers.py (change is at 460-461)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
from collections import namedtuple
import numpy as np
from math import floor
import torch
import tqdm
from PIL import Image
import inspect
import k_diffusion.sampling
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
from modules import prompt_parser, devices, processing, images

from modules.shared import opts, cmd_opts, state
import modules.shared as shared
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback


SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])

samplers_k_diffusion = [
    ('Euler a', 'sample_euler_ancestral', ['k_euler_a'], {}),
    ('Euler', 'sample_euler', ['k_euler'], {}),
    ('LMS', 'sample_lms', ['k_lms'], {}),
    ('Heun', 'sample_heun', ['k_heun'], {}),
    ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {}),
    ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {}),
    ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}),
    ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
    ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
    ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
    ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
    ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras'}),
    ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras'}),
    ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}),
    ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
]

samplers_data_k_diffusion = [
    SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
    for label, funcname, aliases, options in samplers_k_diffusion
    if hasattr(k_diffusion.sampling, funcname)
]

all_samplers = [
    *samplers_data_k_diffusion,
    SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
    SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
]

samplers = []
samplers_for_img2img = []


def create_sampler_with_index(list_of_configs, index, model):
    config = list_of_configs[index]
    sampler = config.constructor(model)
    sampler.config = config

    return sampler


def set_samplers():
    global samplers, samplers_for_img2img

    hidden = set(opts.hide_samplers)
    hidden_img2img = set(opts.hide_samplers + ['PLMS'])

    samplers = [x for x in all_samplers if x.name not in hidden]
    samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]


set_samplers()

sampler_extra_params = {
    'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
    'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
    'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
}


def setup_img2img_steps(p, steps=None):
    if opts.img2img_fix_steps or steps is not None:
        steps = int((steps or p.steps) / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
        t_enc = p.steps - 1
    else:
        steps = p.steps
        t_enc = int(min(p.denoising_strength, 0.999) * steps)

    return steps, t_enc


def single_sample_to_image(sample):
    x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
    x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
    x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
    x_sample = x_sample.astype(np.uint8)
    return Image.fromarray(x_sample)


def sample_to_image(samples, index=0):
    return single_sample_to_image(samples[index])


def samples_to_image_grid(samples):
    return images.image_grid([single_sample_to_image(sample) for sample in samples])


def store_latent(decoded):
    state.current_latent = decoded

    if opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0:
        if not shared.parallel_processing_allowed:
            shared.state.current_image = sample_to_image(decoded)


class InterruptedException(BaseException):
    pass


class VanillaStableDiffusionSampler:
    def __init__(self, constructor, sd_model):
        self.sampler = constructor(sd_model)
        self.orig_p_sample_ddim = self.sampler.p_sample_ddim if hasattr(self.sampler, 'p_sample_ddim') else self.sampler.p_sample_plms
        self.mask = None
        self.nmask = None
        self.init_latent = None
        self.sampler_noises = None
        self.step = 0
        self.stop_at = None
        self.eta = None
        self.default_eta = 0.0
        self.config = None
        self.last_latent = None

        self.conditioning_key = sd_model.model.conditioning_key

    def number_of_needed_noises(self, p):
        return 0

    def launch_sampling(self, steps, func):
        state.sampling_steps = steps
        state.sampling_step = 0

        try:
            return func()
        except InterruptedException:
            return self.last_latent

    def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
        if state.interrupted or state.skipped:
            raise InterruptedException

        if self.stop_at is not None and self.step > self.stop_at:
            raise InterruptedException

        # Have to unwrap the inpainting conditioning here to perform pre-processing
        image_conditioning = None
        if isinstance(cond, dict):
            image_conditioning = cond["c_concat"][0]
            cond = cond["c_crossattn"][0]
            unconditional_conditioning = unconditional_conditioning["c_crossattn"][0]

        conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
        unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)

        assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers'
        cond = tensor

        # for DDIM, shapes must match, we can't just process cond and uncond independently;
        # filling unconditional_conditioning with repeats of the last vector to match length is
        # not 100% correct but should work well enough
        if unconditional_conditioning.shape[1] < cond.shape[1]:
            last_vector = unconditional_conditioning[:, -1:]
            last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1])
            unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated])
        elif unconditional_conditioning.shape[1] > cond.shape[1]:
            unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]]

        if self.mask is not None:
            img_orig = self.sampler.model.q_sample(self.init_latent, ts)
            x_dec = img_orig * self.mask + self.nmask * x_dec

        # Wrap the image conditioning back up since the DDIM code can accept the dict directly.
        # Note that they need to be lists because it just concatenates them later.
        if image_conditioning is not None:
            cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
            unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}

        res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)

        if self.mask is not None:
            self.last_latent = self.init_latent * self.mask + self.nmask * res[1]
        else:
            self.last_latent = res[1]

        store_latent(self.last_latent)

        self.step += 1
        state.sampling_step = self.step
        shared.total_tqdm.update()

        return res

    def initialize(self, p):
        self.eta = p.eta if p.eta is not None else opts.eta_ddim

        for fieldname in ['p_sample_ddim', 'p_sample_plms']:
            if hasattr(self.sampler, fieldname):
                setattr(self.sampler, fieldname, self.p_sample_ddim_hook)

        self.mask = p.mask if hasattr(p, 'mask') else None
        self.nmask = p.nmask if hasattr(p, 'nmask') else None


    def adjust_steps_if_invalid(self, p, num_steps):
        if  (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'):
            valid_step = 999 / (1000 // num_steps)
            if valid_step == floor(valid_step):
                return int(valid_step) + 1

        return num_steps


    def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
        steps, t_enc = setup_img2img_steps(p, steps)
        steps = self.adjust_steps_if_invalid(p, steps)
        self.initialize(p)

        self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
        x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)

        self.init_latent = x
        self.last_latent = x
        self.step = 0

        # Wrap the conditioning models with additional image conditioning for inpainting model
        if image_conditioning is not None:
            conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
            unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}


        samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))

        return samples

    def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
        self.initialize(p)

        self.init_latent = None
        self.last_latent = x
        self.step = 0

        steps = self.adjust_steps_if_invalid(p, steps or p.steps)

        # Wrap the conditioning models with additional image conditioning for inpainting model
        if image_conditioning is not None:
            conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
            unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}

        samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])

        return samples_ddim


class CFGDenoiser(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
        self.mask = None
        self.nmask = None
        self.init_latent = None
        self.step = 0

    def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
        if state.interrupted or state.skipped:
            raise InterruptedException

        conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
        uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)

        batch_size = len(conds_list)
        repeats = [len(conds_list[i]) for i in range(batch_size)]

        x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
        image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond])
        sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])

        denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps)
        cfg_denoiser_callback(denoiser_params)
        x_in = denoiser_params.x
        image_cond_in = denoiser_params.image_cond
        sigma_in = denoiser_params.sigma

        if tensor.shape[1] == uncond.shape[1]:
            cond_in = torch.cat([tensor, uncond])

            if shared.batch_cond_uncond:
                x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})
            else:
                x_out = torch.zeros_like(x_in)
                for batch_offset in range(0, x_out.shape[0], batch_size):
                    a = batch_offset
                    b = a + batch_size
                    x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]})
        else:
            x_out = torch.zeros_like(x_in)
            batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
            for batch_offset in range(0, tensor.shape[0], batch_size):
                a = batch_offset
                b = min(a + batch_size, tensor.shape[0])
                x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]})

            x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})

        denoised_uncond = x_out[-uncond.shape[0]:]
        denoised = torch.clone(denoised_uncond)

        for i, conds in enumerate(conds_list):
            for cond_index, weight in conds:
                denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)

        if self.mask is not None:
            denoised = self.init_latent * self.mask + self.nmask * denoised

        self.step += 1

        return denoised


class TorchHijack:
    def __init__(self, kdiff_sampler):
        self.kdiff_sampler = kdiff_sampler

    def __getattr__(self, item):
        if item == 'randn_like':
            return self.kdiff_sampler.randn_like

        if hasattr(torch, item):
            return getattr(torch, item)

        raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))


class KDiffusionSampler:
    def __init__(self, funcname, sd_model):
        self.model_wrap = k_diffusion.external.CompVisDenoiser(sd_model, quantize=shared.opts.enable_quantization)
        self.funcname = funcname
        self.func = getattr(k_diffusion.sampling, self.funcname)
        self.extra_params = sampler_extra_params.get(funcname, [])
        self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
        self.sampler_noises = None
        self.sampler_noise_index = 0
        self.stop_at = None
        self.eta = None
        self.default_eta = 1.0
        self.config = None
        self.last_latent = None

        self.conditioning_key = sd_model.model.conditioning_key

    def callback_state(self, d):
        step = d['i']
        latent = d["denoised"]
        store_latent(latent)
        self.last_latent = latent

        if self.stop_at is not None and step > self.stop_at:
            raise InterruptedException

        state.sampling_step = step
        shared.total_tqdm.update()

    def launch_sampling(self, steps, func):
        state.sampling_steps = steps
        state.sampling_step = 0

        try:
            return func()
        except InterruptedException:
            return self.last_latent

    def number_of_needed_noises(self, p):
        return p.steps

    def randn_like(self, x):
        noise = self.sampler_noises[self.sampler_noise_index] if self.sampler_noises is not None and self.sampler_noise_index < len(self.sampler_noises) else None

        if noise is not None and x.shape == noise.shape:
            res = noise
        else:
            res = torch.randn_like(x)

        self.sampler_noise_index += 1
        return res

    def initialize(self, p):
        self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
        self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
        self.model_wrap.step = 0
        self.sampler_noise_index = 0
        self.eta = p.eta or opts.eta_ancestral

        if self.sampler_noises is not None:
            k_diffusion.sampling.torch = TorchHijack(self)

        extra_params_kwargs = {}
        for param_name in self.extra_params:
            if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
                extra_params_kwargs[param_name] = getattr(p, param_name)

        if 'eta' in inspect.signature(self.func).parameters:
            extra_params_kwargs['eta'] = self.eta

        return extra_params_kwargs

    def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
        steps, t_enc = setup_img2img_steps(p, steps)

        if p.sampler_noise_scheduler_override:
            sigmas = p.sampler_noise_scheduler_override(steps)
        elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
            sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
        else:
            sigmas = self.model_wrap.get_sigmas(steps)

        sigma_sched = sigmas[steps - t_enc - 1:]
        xi = x + noise * sigma_sched[0]

        extra_params_kwargs = self.initialize(p)
        if 'sigma_min' in inspect.signature(self.func).parameters:
            ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
            extra_params_kwargs['sigma_min'] = sigma_sched[-2]
        if 'sigma_max' in inspect.signature(self.func).parameters:
            extra_params_kwargs['sigma_max'] = sigma_sched[0]
        if 'n' in inspect.signature(self.func).parameters:
            extra_params_kwargs['n'] = len(sigma_sched) - 1
        if 'sigma_sched' in inspect.signature(self.func).parameters:
            extra_params_kwargs['sigma_sched'] = sigma_sched
        if 'sigmas' in inspect.signature(self.func).parameters:
            extra_params_kwargs['sigmas'] = sigma_sched

        self.model_wrap_cfg.init_latent = x
        self.last_latent = x

        samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
            'cond': conditioning, 
            'image_cond': image_conditioning, 
            'uncond': unconditional_conditioning, 
            'cond_scale': p.cfg_scale
        }, disable=False, callback=self.callback_state, **extra_params_kwargs))

        return samples

    def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None):
        steps = steps or p.steps

        if p.sampler_noise_scheduler_override:
            sigmas = p.sampler_noise_scheduler_override(steps)
        elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
            sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps + 1, sigma_min=0.1, sigma_max=10, device=shared.device)
            sigmas = sigmas[:-1]
        else:
            sigmas = self.model_wrap.get_sigmas(steps)

        x = x * sigmas[0]

        extra_params_kwargs = self.initialize(p)
        if 'sigma_min' in inspect.signature(self.func).parameters:
            extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
            extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
            if 'n' in inspect.signature(self.func).parameters:
                extra_params_kwargs['n'] = steps
        else:
            extra_params_kwargs['sigmas'] = sigmas

        self.last_latent = x
        samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
            'cond': conditioning, 
            'image_cond': image_conditioning, 
            'uncond': unconditional_conditioning, 
            'cond_scale': p.cfg_scale
        }, disable=False, callback=self.callback_state, **extra_params_kwargs))

        return samples
Edit
Pub: 07 Nov 2022 01:39 UTC
Views: 5302