This is a preview of a Modern OpenGL tutorial I'm working on. It creates 16x16=256 2D Texture Arrays and fills each one with an array of 16 textures.
Then it makes a Bindless handle to each texture array and draws 256 stacks of separately-defined quads.
16 instances of each quad. Instances must share the same bindless handle, but they can sample different textures from the same array.
The stacks look like cones because the texture arrays are discs of decreasing size.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 | #include <vector>
#include <cmath>
#include <sstream>
#include <iostream>
#include <glad/glad.h>
#include <GLFW/glfw3.h>
GLFWAPI GLFWwindow* createWindow(int width, int height, const char* title) {
GLFWwindow* window = nullptr;
glfwSetErrorCallback([](int /*error_code*/, const char* description) {
std::cerr << description << std::endl;
std::exit(EXIT_FAILURE);
});
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 6);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_OPENGL_DEBUG_CONTEXT, true);
window = glfwCreateWindow(width, height, title, NULL, NULL);
if (!window) {
std::cerr << "Failed to create GLFW window" << std::endl;
glfwTerminate();
std::exit(EXIT_FAILURE);
}
// Make the OpenGL context for this window be the currently associated context for this thread.
glfwMakeContextCurrent(window);
// Load the OpenGL API function pointers.
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) {
std::cerr << "Failed to initialize GLAD" << std::endl;
glfwDestroyWindow(window);
glfwTerminate();
std::exit(EXIT_FAILURE);
}
return window;
}
void checkShaderProgram(GLuint shader_program) {
GLint status = GL_FALSE;
glGetProgramiv(shader_program, GL_LINK_STATUS, &status);
if (status == GL_FALSE) {
GLchar info_log[4096];
glGetProgramInfoLog(shader_program, sizeof(info_log), NULL, info_log);
std::cerr << info_log << std::endl;
std::exit(EXIT_FAILURE);
}
};
GLuint createShaderProgram(GLenum shader_type, const std::vector<const GLchar*>& shader_sources) {
GLuint shader_program = glCreateShaderProgramv(shader_type, (GLsizei)shader_sources.size(), shader_sources.data());
checkShaderProgram(shader_program);
return shader_program;
}
int main()
{
GLFWwindow* window = createWindow(1024, 1024, "Lesson 3: Textures");
const size_t num_instances = 16, num_draws = num_instances * num_instances;
GLuint sampler = 0;
GLuint textures[num_draws];
GLuint64 texture_handles[num_draws];
GLuint texture_handles_buffer = 0;
{
glCreateSamplers(1, &sampler);
glSamplerParameteri(sampler, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glCreateTextures(GL_TEXTURE_2D_ARRAY, num_draws, textures);
const size_t texture_width = 16, texture_height = 16, texture_depth = num_instances;
struct Texel {
GLubyte r;
GLubyte g;
GLubyte b;
GLubyte a;
};
// Convert linear sRGB to gamma-corrected sRGB.
auto linearToSrgb = [](float c) -> GLubyte {
if (c <= 0.0031308f)
c *= 12.92f;
else
c = 1.055f * std::pow(c, 1.f / 2.4f) - 0.055f;
c = c > 1.f ? 1.f : c < 0.f ? 0.f : c;
return (GLubyte)(c * 255.f);
};
auto hsvToRgb = [&](float h, float s, float v) -> Texel {
float r, g, b;
int i = int(h * 6);
float f = h * 6 - i;
float p = v * (1 - s);
float q = v * (1 - f * s);
float t = v * (1 - (1 - f) * s);
switch (i % 6) {
case 0: r = v, g = t, b = p; break;
case 1: r = q, g = v, b = p; break;
case 2: r = p, g = v, b = t; break;
case 3: r = p, g = q, b = v; break;
case 4: r = t, g = p, b = v; break;
case 5: r = v, g = p, b = q; break;
}
return Texel{
linearToSrgb(r),
linearToSrgb(g),
linearToSrgb(b),
255
};
};
// For each texture, draw a different colored cones as discs stacked for each array of 2D slices.
for (size_t i = 0; i < num_draws; i++) {
float draw_ratio = float(i) / num_draws;
glTextureStorage3D(textures[i], 1, GL_SRGB8_ALPHA8, texture_width, texture_height, texture_depth);
for (size_t z = 0; z < texture_depth; z++) {
Texel image[texture_height][texture_width];
float depth_ratio = float(z) / texture_depth;
float radius = 1.f - depth_ratio;
Texel color = hsvToRgb(draw_ratio, 1.0f, depth_ratio);
for (size_t y = 0; y < texture_height; y++) {
float yf = (float(y) + 0.5f) / texture_height * 2.f - 1.f;
for (size_t x = 0; x < texture_width; x++) {
float xf = (float(x) + 0.5f) / texture_width * 2.f - 1.f;
image[y][x] = color;
if ((xf * xf) + (yf * yf) >= (radius * radius))
image[y][x].a = 0;
}
}
GLint level = 0, xoffset = 0, yoffset = 0, zoffset = (GLint)z;
GLsizei width = texture_width, height = texture_height, depth = 1;
glTextureSubImage3D(textures[i], level, xoffset, yoffset, zoffset, width, height, depth, GL_RGBA, GL_UNSIGNED_BYTE, image);
}
glGenerateTextureMipmap(textures[i]);
// Get the GPU address of the texture and make it resident so shaders can access it.
texture_handles[i] = glGetTextureSamplerHandleARB(textures[i], sampler);
glMakeTextureHandleResidentARB(texture_handles[i]);
}
glCreateBuffers(1, &texture_handles_buffer);
glNamedBufferStorage(texture_handles_buffer, sizeof(texture_handles), texture_handles, 0);
}
struct Vertex {
float x;
float y;
float u;
float v;
};
struct Triangle {
unsigned short v0;
unsigned short v1;
unsigned short v2;
};
float quad_width = 1.0f / num_instances;
Vertex quad_verts[4] {
{-quad_width, -quad_width, 0.0f, 0.f},
{+quad_width, -quad_width, 1.0f, 0.f},
{+quad_width, +quad_width, 1.0f, 1.f},
{-quad_width, +quad_width, 0.0f, 1.f},
};
Triangle quad_indices[2]{
{0, 1, 2},
{0, 2, 3}
};
struct Mesh {
unsigned int instance_count = 0;
unsigned int base_index = 0;
unsigned int index_count = 0;
unsigned int base_vertex = 0;
unsigned int vertex_count = 0;
};
std::vector<Mesh> meshes;
GLuint mesh_buffer = 0;
GLint verts_buffer_offset = 0;
glCreateBuffers(1, &mesh_buffer);
{
glNamedBufferStorage(mesh_buffer, sizeof(quad_indices) + sizeof(quad_verts), nullptr, GL_MAP_WRITE_BIT);
{
GLubyte* mapped = (GLubyte*)glMapNamedBuffer(mesh_buffer, GL_WRITE_ONLY);
memcpy(mapped, quad_indices, sizeof(quad_indices));
verts_buffer_offset = (GLint)sizeof(quad_indices);
memcpy(mapped + verts_buffer_offset, quad_verts, sizeof(quad_verts));
glUnmapNamedBuffer(mesh_buffer);
}
Mesh mesh{ num_instances, 0, (unsigned int)std::size(quad_indices) * 3, 0, (unsigned int)std::size(quad_verts) };
meshes = std::vector<Mesh>(num_draws, mesh);
}
GLuint vertex_array_object = 0;
glCreateVertexArrays(1, &vertex_array_object);
const GLuint mesh_buffer_binding = 0, position_attrib = 0, texcoord_attrib = 1;
glVertexArrayAttribBinding(vertex_array_object, position_attrib, mesh_buffer_binding);
glVertexArrayAttribFormat( vertex_array_object, position_attrib, 2, GL_FLOAT, GL_FALSE, offsetof(Vertex, x));
glEnableVertexArrayAttrib( vertex_array_object, position_attrib);
glVertexArrayAttribBinding(vertex_array_object, texcoord_attrib, mesh_buffer_binding);
glVertexArrayAttribFormat( vertex_array_object, texcoord_attrib, 2, GL_FLOAT, GL_FALSE, offsetof(Vertex, u));
glEnableVertexArrayAttrib( vertex_array_object, texcoord_attrib);
struct Vec2 {
GLfloat x;
GLfloat y;
};
GLuint animation_buffer = 0;
glCreateBuffers(1, &animation_buffer);
glNamedBufferStorage(animation_buffer, sizeof(Vec2[num_draws][num_instances]), nullptr, GL_DYNAMIC_STORAGE_BIT);
struct ComputeShader {
GLuint program;
GLint frame_uniform;
} compute_shader;
struct VertexShader {
GLuint program;
GLint rotation_uniform;
} vertex_shader;
struct FragmentShader {
GLuint program;
} fragment_shader;
{
// The version must be the first statement in the shader.
const GLchar* shader_version_source = R"(
#version 460 core // OpenGL 4.6 Core Profile
)";
// Any extensions must be enabled immediately after the version declaration.
const GLchar* vertex_shader_extensions = R"(
#define IN_OUT out
)";
const GLchar* fragment_shader_extensions = R"(
#extension GL_ARB_bindless_texture : require
#define IN_OUT in
)";
GLchar compute_shader_source[4096];
snprintf(compute_shader_source, std::size(compute_shader_source), R"(
// Compute shader to generate a rotation matrix.
layout(local_size_x = %zd, local_size_y = 1, local_size_z = 1) in;
uniform uint frame;
layout(binding = 1, std430) writeonly buffer ssbo { vec2 animations[]; };
void main() {
uint num_meshes = gl_NumWorkGroups.x, mesh = gl_WorkGroupID.x;
uint num_instances = gl_WorkGroupSize.x, instance = gl_LocalInvocationID.x;
uint num_columns = num_instances, num_rows = num_instances;
uint row = uint(mesh / num_columns), column = uint(mod(mesh, num_columns));
float column_offset = bool(row & 1) ? 0.75f : 0.25f;
float mesh_ratio_x = (column + column_offset) / num_columns;
float mesh_ratio_y = (row + 0.5) / num_rows;
float instance_ratio = float(instance) / num_instances;
float stack_offset = instance_ratio / num_rows * 4;
vec2 offset = vec2(mesh_ratio_x * 2 - 1, mesh_ratio_y * -2 + 1 + stack_offset);
animations[mesh * num_instances + instance] = offset;
}
)", num_instances);
GLchar vertex_shader_source[4096];
snprintf(vertex_shader_source, std::size(vertex_shader_source), R"(
layout (location = 0) in vec2 position;
layout (location = 1) in vec2 texcoord;
layout (binding = 1, std430) readonly buffer ssbo2 { vec2 animations[]; };
uniform mat2x2 rotation_matrix;
out gl_PerVertex {
vec4 gl_Position;
};
void main() {
gl_Position.xy = rotation_matrix * position.xy + animations[gl_BaseInstance + gl_InstanceID];
//gl_Position.xy += rotation_matrix * vec2(0.0f, 1.0f) * (gl_InstanceID * 0.01f);
gl_Position.z = 0.0f;
gl_Position.w = 1.0f;
vsOutput.texcoord = texcoord.xy;
int num_instances = %zd;
draw_id = int(gl_BaseInstance) / num_instances;
instance_id = int(gl_InstanceID);
}
)", num_instances);
const GLchar* vertex_output_source = R"(
// Define a common struct that will be used to pass data from the vertex shader to the fragment shader.
IN_OUT struct VSOutput {
vec2 texcoord;
} vsOutput;
flat IN_OUT int draw_id;
flat IN_OUT int instance_id;
)";
const GLchar* fragment_shader_source = R"(
layout(binding = 2, std430) readonly buffer ssbo3 {
sampler2DArray textures[];
};
// Just one output value. Automatically goes to the render target.
out vec4 outColor;
void main()
{
sampler2DArray texture_array = textures[draw_id];
outColor = texture(texture_array, vec3(vsOutput.texcoord.x, vsOutput.texcoord.y, instance_id));
}
)";
GLuint compute_program = createShaderProgram(GL_COMPUTE_SHADER, { shader_version_source, compute_shader_source });
GLuint vertex_program = createShaderProgram(GL_VERTEX_SHADER, { shader_version_source, vertex_shader_extensions, vertex_output_source, vertex_shader_source });
GLuint fragment_program = createShaderProgram(GL_FRAGMENT_SHADER, { shader_version_source, fragment_shader_extensions, vertex_output_source, fragment_shader_source });
compute_shader = { compute_program, glGetUniformLocation(compute_program, "frame") };
vertex_shader = { vertex_program, glGetUniformLocation(vertex_program, "rotation_matrix") };
fragment_shader = { fragment_program };
}
GLuint pipeline = 0;
glGenProgramPipelines(1, &pipeline);
glUseProgramStages(pipeline, GL_VERTEX_SHADER_BIT, vertex_shader.program);
glUseProgramStages(pipeline, GL_FRAGMENT_SHADER_BIT, fragment_shader.program);
constexpr GLuint anim_binding = 1;
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, anim_binding, animation_buffer);
constexpr GLuint texture_binding = 2;
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, texture_binding, texture_handles_buffer);
// https://registry.khronos.org/OpenGL-Refpages/gl4/html/glMultiDrawArraysIndirect.xhtml
struct DrawElementsIndirectCommand {
unsigned int count;
unsigned int instanceCount;
unsigned int firstIndex;
int baseVertex;
unsigned int baseInstance;
};
DrawElementsIndirectCommand cpu_commands_buffer[num_draws] = {};
GLuint command_buffer = 0;
glCreateBuffers(1, &command_buffer);
glNamedBufferStorage(command_buffer, sizeof(cpu_commands_buffer), nullptr, GL_DYNAMIC_STORAGE_BIT);
for (int frame = 0; !glfwWindowShouldClose(window); frame++) {
glClearColor(0.0f, 0.0f, 0.5f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
glProgramUniform1ui(compute_shader.program, compute_shader.frame_uniform, frame);
glUseProgram(compute_shader.program);
glDispatchCompute(num_draws, 1, 1);
glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT);
glUseProgram(0);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
struct Mat2x2 {
GLfloat m00, m01;
GLfloat m10, m11;
};
float angle = frame * -0.03f;
Mat2x2 rotation_matrix = {
std::cos(angle), -std::sin(angle),
std::sin(angle), std::cos(angle)
};
glProgramUniformMatrix2fv(vertex_shader.program, vertex_shader.rotation_uniform, 1, false, (const float*)&rotation_matrix);
glBindProgramPipeline(pipeline);
glBindVertexArray(vertex_array_object);
const GLsizei bind_count = 1;
const GLuint bind_buffers[bind_count] = { mesh_buffer };
const GLintptr bind_offsets[bind_count] = { verts_buffer_offset };
const GLsizei bind_strides[bind_count] = { sizeof(Vertex) };
glVertexArrayVertexBuffers(vertex_array_object, mesh_buffer_binding, bind_count, bind_buffers, bind_offsets, bind_strides);
glVertexArrayElementBuffer(vertex_array_object, mesh_buffer);
GLuint base_instance = 0;
GLsizei draw_count = 0;
for (const Mesh& mesh : meshes) {
cpu_commands_buffer[draw_count++] = { mesh.index_count, mesh.instance_count, mesh.base_index, (int)mesh.base_vertex, base_instance };
base_instance += mesh.instance_count;
}
glNamedBufferSubData(command_buffer, 0, sizeof(cpu_commands_buffer[0]) * draw_count, cpu_commands_buffer);
glBindBuffer(GL_DRAW_INDIRECT_BUFFER, command_buffer);
glMultiDrawElementsIndirect(GL_TRIANGLES, GL_UNSIGNED_SHORT, 0, draw_count, 0);
glfwSwapBuffers(window);
glfwPollEvents();
}
// We could just let process termination clean everything up for us.
// But, let's manually clean up our resources just to be explicit.
glDeleteVertexArrays(1, &vertex_array_object);
glDeleteProgramPipelines(1, &pipeline);
glDeleteProgram(compute_shader.program);
glDeleteProgram(fragment_shader.program);
glDeleteProgram(vertex_shader.program);
GLuint buffers_to_delete[] = { command_buffer, animation_buffer, mesh_buffer};
glDeleteBuffers(std::size(buffers_to_delete), buffers_to_delete);
glDeleteTextures(num_draws, textures);
glDeleteSamplers(1, &sampler);
// Shut down and clean up everything we did with GLFW.
glfwTerminate();
// Exit the program.
return 0;
}
|