# Config:$kohya_ss_dir="";#Full path to kohya_ss scripts folder.$ckpt="";#Full path to model you want to train FROM, or base model.$image_dir="";#Data set folder.$output="";#Output folder for your baked LORAs.$reg_dir="";#Only use these for dreambooth style training. Point to an empty folder otherwise.$train_batch_size=10#Amount of images to process at once. I have 8GB of VRAM so I left it at 1, it just worked. Raise if you got more VRAM.$learning_rate=1e-3#Unet learning rate.$text_encoder_learning_rate=1e-3#Text Encoder learning rate. This is the recommended value.$num_epochs=5#Total number of epochs (amount of times the entire set is repeated)$save_every_n_epochs=1#Save checkpoints every X epochs.$resolution=512#Resolution to work at. Higher requires more training for the unet and more VRAM.$network_dim=64#AKA Rank. Higher for more resemblance to the training images and bigger file size. 96-192 for characters. 160 was good for me.$network_alpha=1#Must be equal or lower than network dim. Dampens learning the lower it is, but avoids rounding issues.$noise_offset=0.0#Increases dynamic range of outputs. Every 0.1 dampens learning quite a bit, do more steps or higher training rates to compensate.$clip_skip=2#Set it to 2 if you train from NAI.$optimizer="AdamW8bit"# Valid values: "AdamW", "AdamW8bit", "Lion", "SGDNesterov", "SDGNesterov8bit", "DAdaptation", "AdaFactor"# Default AdamW8bit (old --use_8bit_adam). DAdaptation requires setting learning rates to values between 0.1 and 1.0 as it tweaks them during training.$scheduler="cosine_with_restarts"# End of config# $learning_rate = $learning_rate * $train_batch_size # Seems to work better for the Unet.cd $kohya_ss_dir.\venv\Scripts\activate#Activate python venv before starting.acceleratelaunch--num_cpu_threads_per_process8train_network.py`--network_module="networks.lora"`--pretrained_model_name_or_path=$ckpt--train_data_dir=$image_dir--reg_data_dir=$reg_dir--output_dir=$output`--caption_extension=".txt"--shuffle_caption--keep_tokens=1`--prior_loss_weight=1`--resolution="$resolution"`--enable_bucket--min_bucket_reso=320--max_bucket_reso=960`--train_batch_size="$train_batch_size"`--learning_rate="$learning_rate"--unet_lr="$learning_rate"--text_encoder_lr=$text_encoder_learning_rate`--max_train_epochs=$num_epochs`--mixed_precision="fp16"--save_precision="fp16"`--optimizer_type="$optimizer"--xformers`--save_every_n_epochs="$save_every_n_epochs"`--save_model_as=safetensors`--clip_skip="$clip_skip"`--seed=420`--flip_aug`--network_dim="$network_dim"--network_alpha="$network_alpha"`--max_token_length=225`--cache_latents`--lr_scheduler="$scheduler"`--noise_offset="$noise_offset"