CDTuner for ComfyUI

Installation

Copy the code in to a .py file in your ComfyUI/custom_nodes directory, then restart ComfyUI and refresh the ComfyUI page in your browser.

Details

  • SaturationTuner modifies the VAE to increase or decrease latent decoding/encoding color saturation. Higher values = more saturation.
  • DetailTuner modifies the model to increase or decrease details and contrast in gens. Play around with the values to get a feel for their effect.
  • ColorTuner modifies the intermediate latent noise predictions during sampling to adjust their color and contrast.
  • LatentColorTuner modifies latent images to adjust their color and contrast.
  • Masked versions of the Color and LatentColor tuner nodes allow you to mask off areas to be affected.

Changelog

  • 2024-01-11 #1 - Implemented the detail tuning portion of CDTuner (the part that was already implemented by the existing CDTuner node). Reversed the directions of the ColorTuner values so that they make more sense. Added early exit to ColorTuner so that it only gets applied if there is a non-zero value.
  • 2024-01-11 #2 - Implemented masked Color and LatentColor tuner nodes. Moved a few calculations around to more sensible positions.

Code

import torch
from comfy.sd import VAE

class SaturationTuner:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "vae": ("VAE",),
            "saturation": ("FLOAT", {"default": 0.0, "min": -20.0, "max": 20.0, "step": 0.1}),
        }}

    RETURN_TYPES = ("VAE",)
    FUNCTION = "patch"
    CATEGORY = "custom_node_experiments"

    VAEKEYS = [
        "decoder.up.1.upsample.conv.weight",
        "decoder.up.0.block.0.nin_shortcut.weight",
    ]

    def patch(self, vae, saturation):
        sd = vae.get_sd()
        for key in self.VAEKEYS:
            sd[key] = sd[key].clone() * (1 + saturation * 0.075)
        new_vae = VAE(sd=sd)
        return (new_vae, )


class DetailTuner:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "model": ("MODEL",),
            "detail_1": ("FLOAT", {"default": 0.0, "min": -10.0, "max": 10.0, "step": 0.1}),
            "detail_2": ("FLOAT", {"default": 0.0, "min": -10.0, "max": 10.0, "step": 0.1}),
            "contrast_1": ("FLOAT", {"default": 0.0, "min": -10.0, "max": 10.0, "step": 0.1}),
        }}

    RETURN_TYPES = ("MODEL", )
    FUNCTION = "patch"
    CATEGORY = "custom_node_experiments"

    TO_SCALE = [
        "diffusion_model.input_blocks.0.0.weight",
        "diffusion_model.input_blocks.0.0.bias",
        "diffusion_model.out.0.weight",
        "diffusion_model.out.0.bias",
    ]
    SCALE_COEF = [
        -0.01,
         0.02,
        -0.01,
         0.02,
    ]

    TO_OFFSET = [
        "diffusion_model.out.2.bias",
    ]
    OFFSET_COEF = [
        [0.02, 0, 0, 0]
    ]

    def patch(self, model, detail_1, detail_2, contrast_1):
        if not any((detail_1, detail_2, contrast_1)):
            return (model, )

        scale_strengths = [detail_1, detail_1, detail_2, detail_2]
        offset_strengths = [contrast_1]

        m = model.clone()
        m.patch_model()
        sd = m.model.state_dict()

        patches = {}
        for i, key in enumerate(self.TO_SCALE):
            if scale_strengths[i] != 0:
                patches[key] = (sd[key] * self.SCALE_COEF[i] * scale_strengths[i], )
        for i, key in enumerate(self.TO_OFFSET):
            if offset_strengths[i] != 0:
                patches[key] = (torch.tensor(self.OFFSET_COEF[i]) * offset_strengths[i], )
        m.unpatch_model()
        m.add_patches(patches)

        return (m, )


class ColorTuner:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "model": ("MODEL",),
            "contrast_2": ("FLOAT", {"default": 0.0, "min": -20.0, "max": 20.0, "step": 0.1}),
            "brightness": ("FLOAT", {"default": 0.0, "min": -20.0, "max": 20.0, "step": 0.1}),
            "cyan_red": ("FLOAT", {"default": 0.0, "min": -20.0, "max": 20.0, "step": 0.1}),
            "magenta_green": ("FLOAT", {"default": 0.0, "min": -20.0, "max": 20.0, "step": 0.1}),
            "yellow_blue": ("FLOAT", {"default": 0.0, "min": -20.0, "max": 20.0, "step": 0.1}),
        }}

    RETURN_TYPES = ("MODEL", )
    FUNCTION = "patch"
    CATEGORY = "custom_node_experiments"

    COLORS = [[-1,1/3,2/3],[1,1,0],[0,-1,-1],[1,0,1]]

    @staticmethod
    def default_cfg(args):
        return args["uncond"] + (args["cond"] - args["uncond"]) * args["cond_scale"]

    def patch(self, model, contrast_2, brightness, cyan_red, magenta_green, yellow_blue):
        # color shifting values
        ddratios = [contrast_2, brightness, cyan_red, magenta_green, yellow_blue]
        # bypass
        if not any(ddratios):
            return (model, )
        ratios = [x * 20/3 for x in [ddratios[0] * 0.02] + ColorTuner.COLOR_CALC(ddratios[1:])]

        m = model.clone()

        # we need to have some CFG function to wrap, so we set a default if there isn't one
        cfg_func = None
        if "sampler_cfg_function" in m.model_options:
            cfg_func = m.model_options["sampler_cfg_function"]
        else:
            cfg_func = ColorTuner.default_cfg

        def wrapper(args):
            for i, x in enumerate(ratios):
                args["cond"][:,i,:,:] = args["cond"][:,i,:,:] + x
                args["uncond"][:,i,:,:] = args["uncond"][:,i,:,:] + x
            return cfg_func(args)

        # set the wrapper
        m.set_model_sampler_cfg_function(wrapper)

        return (m, )

    @classmethod
    def COLOR_CALC(cls, colors):
        outs = [[y * colors[i] * 0.02 for y in x] for i, x in enumerate(cls.COLORS)]
        return [sum(x) for x in zip(*outs)]


class ColorTunerMasked:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "model": ("MODEL",),
            "contrast_2": ("FLOAT", {"default": 0.0, "min": -20.0, "max": 20.0, "step": 0.1}),
            "brightness": ("FLOAT", {"default": 0.0, "min": -20.0, "max": 20.0, "step": 0.1}),
            "cyan_red": ("FLOAT", {"default": 0.0, "min": -20.0, "max": 20.0, "step": 0.1}),
            "magenta_green": ("FLOAT", {"default": 0.0, "min": -20.0, "max": 20.0, "step": 0.1}),
            "yellow_blue": ("FLOAT", {"default": 0.0, "min": -20.0, "max": 20.0, "step": 0.1}),
            "mask": ("MASK", ),
        }}

    RETURN_TYPES = ("MODEL", )
    FUNCTION = "patch"
    CATEGORY = "custom_node_experiments"

    COLORS = [[-1,1/3,2/3],[1,1,0],[0,-1,-1],[1,0,1]]

    @staticmethod
    def default_cfg(args):
        return args["uncond"] + (args["cond"] - args["uncond"]) * args["cond_scale"]

    def patch(self, model, contrast_2, brightness, cyan_red, magenta_green, yellow_blue, mask):
        # color shifting values
        ddratios = [contrast_2, brightness, cyan_red, magenta_green, yellow_blue]
        # bypass
        if not any(ddratios):
            return (model, )
        ratios = [x * 20/3 for x in [ddratios[0] * 0.02] + ColorTuner.COLOR_CALC(ddratios[1:])]

        m = model.clone()

        # we need to have some CFG function to wrap, so we set a default if there isn't one
        cfg_func = None
        if "sampler_cfg_function" in m.model_options:
            cfg_func = m.model_options["sampler_cfg_function"]
        else:
            cfg_func = ColorTuner.default_cfg

        mask = mask.reshape((mask.shape[0], 1, mask.shape[1], mask.shape[2]))

        def wrapper(args):
            # masking has to be done in the wrapper as we need the cond/uncond shape
            l_mask = torch.nn.functional.interpolate(mask, size=args["cond"].shape[2:], mode="bilinear")
            l_mask = l_mask.to(device=args["cond"].device)
            for i, x in enumerate((x * l_mask for x in ratios)):
                args["cond"][:,i,:,:] = args["cond"][:,i,:,:] + x
                args["uncond"][:,i,:,:] = args["uncond"][:,i,:,:] + x
            return cfg_func(args)

        # set the wrapper
        m.set_model_sampler_cfg_function(wrapper)

        return (m, )


class LatentColorTuner:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "latent": ("LATENT",),
            "contrast": ("FLOAT", {"default": 0.0, "min": -1000.0, "max": 1000.0, "step": 0.1}),
            "brightness": ("FLOAT", {"default": 0.0, "min": -1000.0, "max": 1000.0, "step": 0.1}),
            "cyan_red": ("FLOAT", {"default": 0.0, "min": -1000.0, "max": 1000.0, "step": 0.1}),
            "magenta_green": ("FLOAT", {"default": 0.0, "min": -1000.0, "max": 1000.0, "step": 0.1}),
            "yellow_blue": ("FLOAT", {"default": 0.0, "min": -1000.0, "max": 1000.0, "step": 0.1}),
        }}

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "patch"
    CATEGORY = "custom_node_experiments"

    def patch(self, latent, contrast, brightness, cyan_red, magenta_green, yellow_blue):
        # color shifting values
        ddratios = [contrast, brightness, cyan_red, magenta_green, yellow_blue]
        if not any(ddratios):
            return (latent, )

        ratios = [x * 20/3 for x in [ddratios[0] * 0.02] + ColorTuner.COLOR_CALC(ddratios[1:])]

        l = latent.copy()
        l["samples"] = l["samples"].clone()

        for i, x in enumerate(ratios):
            l["samples"][:,i,:,:] = l["samples"][:,i,:,:] - x

        return (l, )


class LatentColorTunerMasked:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "latent": ("LATENT",),
                "contrast": ("FLOAT", {"default": 0.0, "min": -1000.0, "max": 1000.0, "step": 0.1}),
                "brightness": ("FLOAT", {"default": 0.0, "min": -1000.0, "max": 1000.0, "step": 0.1}),
                "cyan_red": ("FLOAT", {"default": 0.0, "min": -1000.0, "max": 1000.0, "step": 0.1}),
                "magenta_green": ("FLOAT", {"default": 0.0, "min": -1000.0, "max": 1000.0, "step": 0.1}),
                "yellow_blue": ("FLOAT", {"default": 0.0, "min": -1000.0, "max": 1000.0, "step": 0.1}),
                "mask": ("MASK", ),
            },
        }

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "patch"
    CATEGORY = "custom_node_experiments"

    def patch(self, latent, contrast, brightness, cyan_red, magenta_green, yellow_blue, mask):
        # color shifting values
        ddratios = [contrast, brightness, cyan_red, magenta_green, yellow_blue]
        if not any(ddratios):
            return (latent, )

        l = latent.copy()
        l["samples"] = l["samples"].clone()

        mask = mask.reshape((mask.shape[0], 1, mask.shape[1], mask.shape[2]))
        mask = torch.nn.functional.interpolate(mask, size=l["samples"].shape[2:], mode="bilinear")
        mask = mask.to(device=l["samples"].device)
        ratios = [x * 20/3 * mask for x in [ddratios[0] * 0.02] + ColorTuner.COLOR_CALC(ddratios[1:])]

        for i, x in enumerate(ratios):
            l["samples"][:,i,:,:] = l["samples"][:,i,:,:] - x

        return (l, )


NODE_CLASS_MAPPINGS = {
    "SaturationTuner": SaturationTuner,
    "ColorTuner": ColorTuner,
    "ColorTunerMasked": ColorTunerMasked,
    "DetailTuner": DetailTuner,
    "LatentColorTuner": LatentColorTuner,
    "LatentColorTunerMasked": LatentColorTunerMasked,
}
Edit
Pub: 06 Jan 2024 02:29 UTC
Edit: 11 Jan 2024 10:53 UTC
Views: 584