Models for llama.cpp (ggml format)
LLaMA quantized 4-bit weights (ggml q4_0)
2023-03-31 torrent magnet
SHA256 checksums:
ggml model file magic: 0x67676a74
(ggjt
in hex)
ggml model file version: 1
Alpaca quantized 4-bit weights (ggml q4_0)
Model | Download |
---|---|
LLaMA 7B fine-tune from chavinlo/alpaca-native | 2023-03-31 torrent magnet |
LLaMA 7B merged with tloen/alpaca-lora-7b LoRA | 2023-03-31 torrent magnet |
LLaMA 13B merged with chansung/alpaca-lora-13b LoRA | 2023-03-31 torrent magnet |
LLaMA 33B merged with chansung/alpaca-lora-30b LoRA | 2023-03-31 torrent magnet |
Example:
./main --model ggml-model-q4_0.bin --file prompts/alpaca.txt --instruct --ctx_size 2048 --keep -1
SHA256 checksums:
ggml model file magic: 0x67676a74
(ggjt
in hex)
ggml model file version: 1
GPT4All 7B quantized 4-bit weights (ggml q4_0)
2023-03-31 torrent magnet
GPT4All can be used with llama.cpp in the same way as the other ggml
models.
SHA256 checksums:
ggml model file magic: 0x67676a74
(ggjt
in hex)
ggml model file version: 1
GPT4 x Alpaca 13B quantized 4-bit weights (ggml q4_0)
2023-04-01 torrent magnet
GPT4 x Alpaca can be used with llama.cpp in the same way as the other ggml
models.
Text generation with this version is faster compared to the GPTQ-quantized one.
SHA256 checksum:
ggml model file magic: 0x67676a74
(ggjt
in hex)
ggml model file version: 1
GPT4 x Alpaca 13B quantized 4-bit weights (ggml q4_1 from GPTQ with groupsize 128)
2023-04-01 torrent magnet
GPT4 x Alpaca can be used with llama.cpp in the same way as the other ggml
models.
SHA256 checksum:
ggml model file magic: 0x67676a74
(ggjt
in hex)
ggml model file version: 1
Vicuna 13B quantized 4-bit weights (ggml q4_0)
2023-04-03 torrent magnet
Vicuna can be used with llama.cpp in the same way as the other ggml
models.
SHA256 checksum:
ggml model file magic: 0x67676a74
(ggjt
in hex)
ggml model file version: 1
OpenAssistant LLaMA 13B WIP fine-tune quantized 4-bit weights (ggml q4_0 & q4_1)
Variant: dvruette/oasst-llama-13b-2-epochs
2023-04-07 torrent magnet | HuggingFace Hub download
SHA256 checksums:
ggml model file magic: 0x67676a74
(ggjt
in hex)
ggml model file version: 1
More details
GPTQ-quantized model source
Torrent source
Alpacino 13B fine-tune 4-bit weights (ggml q4_0)
Variant: digitous/Alpacino13b
HuggingFace Hub download
SHA256 checksum:
ggml model file magic: 0x67676a74
(ggjt
in hex)
ggml model file version: 1
Alpacino 33B fine-tune 4-bit weights (ggml q4_0)
Variant: digitous/Alpacino30b
2023-04-17 torrent magnet | HuggingFace Hub download
SHA256 checksum:
ggml model file magic: 0x67676a74
(ggjt
in hex)
ggml model file version: 1
Models for HuggingFace 🤗
Updated tokenizer and model configuration files can be found here.
LLaMA float16 weights
2023-03-26 torrent magnet | HuggingFace Hub downloads
Torrent source and SHA256 checksums
Vicuna 13B float16 weights
2023-04-03 torrent magnet
LLaMA quantized 4-bit weights (GPTQ format without groupsize)
2023-03-26 torrent magnet
SHA256 checksums:
Torrent source and more information
LLaMA quantized 4-bit weights (GPTQ format with groupsize 128)
2023-03-26 torrent magnet
Tutorial link for Text generation web UI
Groupsize 128
is a better choice for the 13B, 33B and 65B models, according to this.
SHA256 checksums:
Torrent source and more information
Alpaca quantized 4-bit weights (GPTQ format with groupsize 128)
Model | Download |
---|---|
LLaMA 7B fine-tune from ozcur/alpaca-native-4bit as safetensors | 2023-03-29 torrent magnet |
LLaMA 33B merged with baseten/alpaca-30b LoRA by an anon | 2023-03-26 torrent magnet | extra config files |
SHA256 checksums:
Vicuna 13B quantized 4-bit & 8-bit weights (GPTQ format with groupsize 128)
2023-04-03 torrent magnet
Torrent source
Extra config files
OpenAssistant LLaMA 13B WIP fine-tune quantized 4-bit weights (GPTQ format with groupsize 128)
Variant: dvruette/llama-13b-pretrained-dropout
2023-04-11 torrent magnet
Alpacino 13B fine-tune 4-bit weights (GPTQ format with groupsize 128)
Variant: digitous/Alpacino13b